Cloud Computing for Data Analysis
DSBA 6190-U90 (CRN 25578)

Instructor Information

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Email</th>
<th>Office Location & Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colby T. Ford, Ph.D.</td>
<td>colby.ford@uncc.edu</td>
<td>PORTAL 354 (By Appt.)</td>
</tr>
</tbody>
</table>

General Information
Wednesdays 5:30 pm - 8:15 pm, Center City 602

Description
Introduction to the basic principles of cloud computing for data intensive applications. Covers a broad range of technologies and solutions from data platform architecture to data analytics. Focuses on the scalable deployment of cloud resources and the integration between individual services. Topics covered will include data architecture such as SQL databases and data lakes, containerized applications, parallel computing using cluster technologies such as Apache Spark, machine learning using common classification, clustering, and regression algorithms, and deep learning using GPU-based infrastructure.

Restriction(s): Familiarity with Python and/or R, SQL, Unix, Data Structures, Machine Learning Algorithms, and Statistics; good programming skills and a solid mathematical background.

Learning Outcomes:
1. Understand the benefits of cloud-based architecture
2. Architect end-to-end solutions based on user/organizational requirements
3. Recognize the differences in data platform options on-premise versus in the cloud
4. Discuss the cloud and on-premise machine learning approaches and the benefits therein

Grading:
The final course grade will be determined by the student's total number of points earned in the class out of the total possible points.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Points</th>
<th>Final Grading Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Platform Lab</td>
<td>100</td>
<td>≥900/1000pts A</td>
</tr>
<tr>
<td>Machine Learning Lab</td>
<td>150</td>
<td>800-899/1000pts B</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>200</td>
<td>700-799/1000pts C</td>
</tr>
<tr>
<td>Parallel Computing Lab</td>
<td>150</td>
<td><700/1000pts D or Inc.</td>
</tr>
<tr>
<td>Deep Learning Lab</td>
<td>100</td>
<td>Academic Dishonesty F</td>
</tr>
<tr>
<td>Final Exam</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Section</td>
<td>Topic(s)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| January 12th | Intro | - Introduction to the course
- Gitting Started/App Setup | |
| January 19th | Data Platform | - Unstructured Data Stores
 o Blob Storage
 o Data Lakes | Begin Data Platform Lab |
| January 26th | Data Platform | - Structured Data Stores
 o Databases
 o Data Warehouses | |
| | | - Azure Data Factory | |
| February 2nd | Data Platform | - Containerization (Docker)
 o Kubernetes
 o Microservices
 o Azure Functions | |
| February 9th | Machine Learning | - Intro to Machine Learning
- ML Options in the Cloud
- Cognitive Services
- Automated Machine Learning | Data Platform Lab Due |
| February 16th| Machine Learning | - Regression, Classification, Clustering
- Intro to Azure Machine Learning | Begin Machine Learning Lab |
| February 23rd| Machine Learning | - Cross-Validation and Tuning
- Parallel Model Training | |
| March 2nd | Review | - Review Data Platform
- Review Machine Learning | Machine Learning Lab Due |
| March 9th | NO CLASS | | |
| March 16th | Midterm Exam | | |
| March 23rd | Parallel Computing | - Apache Spark (Databricks) | Begin Parallel Computing Lab|
| March 30th | Parallel Computing | - Other Cluster Technologies
- Intro to Deep Learning and Neural Networks | |
| | and Deep Learning | | |
| April 6th | Deep Learning | - Training Neural Networks with GPUs | Parallel Computing Lab Due |
| April 13th | Deployment | - MLOps, Model Operationalization, Resource Deployment | Begin Deep Learning Lab |
| April 20th | Review | - Review Parallel Computing
- Review Deep Learning | Deep Learning Lab Due |
| April 27th | Final Exam | | |
Academic Integrity and Honesty:
Students are required to read and abide by the Code of Student Academic Integrity available from Dean of Students Office. This code forbids cheating, fabrication or falsification of information, multiple submissions of academic work, plagiarism (including viewing others work without instructor permission), abuse of academic materials, and complicity of academic dishonesty. Violations of the Code of Student Academic Integrity, including plagiarism, result in disciplinary action as provided by the Code.

Civility:
We are concerned with a positive learning experience. This course strives to create an inclusive academic climate in which the dignity of all individuals is respected and maintained. We value diversity that is beneficial to both employers and society at large. Students are encouraged to actively and appropriately share their views in class discussions.

Inclement Weather:
University Policy Statement #13 states the University is open unless the Chancellor announces that the University is closed. The inclement weather hotline number to call is 704-687-1900. In the event of inclement weather, check your e-mail, and Canvas. The instructor will post a message on Canvas, and through e-mail. The instructor will use their best judgment as to whether class should be held.

Illness:
If you are feeling unwell, have a fever, have symptoms of COVID-19, or have been in contact with someone with COVID-19, you are not allowed to attend class. All class sessions will be live streamed online via Zoom or a similar service.

Disability:
UNC Charlotte is committed to access to education. If you have a disability and need academic accommodations, please provide a letter of accommodation from Disability Services early in the semester. For more information on accommodations, contact the Office of Disability Services at 704-687-0040 or visit their office in Fretwell 230.

Withdrawal:
The University policy on Course Withdrawal allows students a limited number of opportunities available to withdraw from courses. There are financial and academic consequences that may result from course withdrawal. If a student is concerned about his / her ability to succeed in this course, it is important to make an appointment to speak with the instructor as soon as possible.

Syllabus Revision:
The instructor may modify the class schedule and syllabus throughout the semester. Changes will appear on Canvas. Students are responsible for refreshing their syllabus.

E-Mail Communication:
Students are responsible for *all* announcements made in class and on the class online resources. Students should check the online class resources throughout the semester. The Instructor and Teaching Assistants send occasional e-mails with important information. We send this information to the student’s UNC Charlotte e-mail address listed on Banner system. If a student is not checking his / her UNC Charlotte e-mail address (ex. userName@uncc.edu) please be sure to access this e-mail and check it regularly during this course.